

Acids and Bases

Problem You want to tell the difference between an atom and an ion.

Solution Look to see if the formula has an electric charge on it.

+1	+2	variable					+3		-3	-2	-1	0					
H ⁺																	
Li+														N ³⁻	O ²⁻	F-	
Na ⁺	Mg ²⁺	- · · · · · · · · · · · · · · · · · · ·	3	×000				_	1000.00.000000	Patrices	- 1 &	Al³+		P ³⁻	S ²⁻	CI-	
K ⁺	Ca ²⁺			8			Fe ²⁺ Fe ³⁺			Cu ²⁺	Zn ²⁺				Se ²⁻	Br-	
\bigcirc										Ag+						1-	
	Ba ²⁺									5			Pb ²⁺				

Trends for ionic charge

- Al is an **atom**; it has no overall electrical charge. Al³⁺ is an **ion**; it has a +3 overall electrical charge
- Cl⁻ is an **ion**; it has a -1 overall electrical charge. Cl is an **atom**; it has no overall electrical charge.

Discussion

- Atoms are electrically neutral. (They have no overall electrical charge).
- This is because they have the same number of protons in the nucleus as electrons found in all the electron shells.
- Ions have an electrical charge this is because they have different numbers of protons and electrons
- Ions with more protons than electrons will have a positive charge.
- Ions with more electrons than protons will have a negative charge.
- Every proton in the nucleus has a positive (+) charge.
- Every electron in an electron shell has a negative (-) charge.
- Metal atoms form positive ions by losing electrons from the outer (valence) shell.
- Non-metal atoms (but not group 18 elements, the noble gases) form negative ions by gaining electrons to fill the outer (valence) shell.
- Some groups of atoms lose or gain electrons to form ions e.g. SO_4^{2-} . You will not be expected to explain the charge on these type of ions.

Worked Example

Which of the following are examples atoms and which are ions?

O K^+ Br^- Ne H^+ H NH_4^+ Mg^{2+} Mg O^{2-}

Atoms	Ions with a positive charge	Ions with a negative change
O Ne H Mg	K^+ H^+ NH_4^+ Mg^{2+}	Br- 0 ² -

Questions to try yourself

Which of the following are examples atoms and which are ions?

N CO_3^{2-} F Ca Ba^{2+} OH SO_4^{2-} Al S S^{2-}

Atoms	Ions with a positive charge	Ions with a negative change			

Is Ca²⁺ an atom or ion? Why?

Is Na an atom or ion? Why?

Explain how many protons and electrons a ${\rm Mg^{2+}}$ ion has. (The atom ${\rm Mg}$ has an atomic number of 12).

Answers

Which of the following are examples atoms and which are ions?

N
$$CO_3^{2-}$$
 F Ca $OH^ SO_4^{2-}$ Al S S^{2-}

Atoms	Ions with a positive charge	Ions with a negative change			
N F Ca Al S	Ba ²⁺	CO ₃ ²⁻ OH- S ²⁻			

Is Ca²⁺ an atom or ion? Why?

 Ca^{2+} is an ion because it has a +2 electrical charge. It has 2 more protons than it has electrons.

Is Na an atom or ion? Why?

Na is an atom because it has a ZERO electrical charge. It has the same number of positively charged protons as it has negatively charged electrons.

Explain how many protons and electrons a Mg^{2+} ion has. (The atom Mg has an atomic number of 12).

The Mg^{2+} ion has 12 protons but only 10 electrons. It has lost 2 electrons from its valence shell which gives it an overall charge (net charge) of +2.

Extra! It is good to give electron arrangements in your answer – this will be covered in more detail in another sheet.

The Mg atom (atomic number 12) has an electron arrangement 2, 8, 2 It has 12 protons and 12 electrons.

It loses the 2 valence electrons. The ion Mg^{2+} has 12 (positively charged) protons and only 10 (negatively charged) electrons, giving it an overall (net) charge of +2. The ion has an electron arrangement of 2.8